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3 Human & model sampling behavior

Introduction

Conclusions
• In “guess” task (structure learning), participants use a two-stage sampling policy: an initial phase of repeated sampling in temporal “chunks” to generate and 

test hypotheses about each novel single option, followed by a directed-sampling phase focusing on the more uncertain option. 
• This initial phase of repeated sampling reduces the marginal loss in accuracy due to learning noise.
• Task-induced changes in phasic pupil-dilation dynamics2 correlate with changes in the magnitude of learning noise (but not with other parameters).

Information-seeking task1 (N = 420 human participants)
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Model comparison (based on “evidence lower bound”)
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p < 0.001
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utilityi,t = βv*ei,t*target + 
(-1)*βc*|ei,t| + 
βr*congruency
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• Marginal loss: The final guess 
(p(correct)) that would have 
been obtained if there were no 
noise during learning, i.e., the 
difference between the exact 
and noisy model predictions.

• Noisy model > 
exact model

• Noise & leak: 
Draw > Guess

• Sig. correlation: 
Draw vs. Guess 
noise magnitude• Initial repeated sampling helps 

protect simulated agents from 
marginal loss in accuracy.
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• Exploration studied in laboratory settings: 
• Not all choices yield immediate rewards: 
• Key question: 

Goal-directed actions to maximize rewards; 
e.g., browsing restaurant reviews online; 
How does information seeking contribute to learning the environment’s structure versus maximizing rewards?
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