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• MEG activity patterns support a discrete two-stage process: choosing the highest-value target among many (‘selection’) was preceded by a 
suppression of the lowest-value option (‘elimination’), which simplifies a complex N-alternative choice [3].

• A neural signature of this elimination as reduction of lateralised alpha (~ 10 Hz) power in and around the anterior IPS.
• A higher-value distractor prolongs RT, which is associated with a shallower slope of alpha/low-beta (8 ~ 20 Hz) power reduction during information 

sampling in the motor cortex.
1. Krajbich & Rangel (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. PNAS, 108(33), 13852-13857.

2. Gluth et al. (2020). Value-based attention but not divisive normalization influences decisions with multiple alternatives. Nature Human Behaviour, 4(6), 634-645.

3. Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4), 281–299. 
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Conclusions6

Behavioural task and performance2
• Human participants (N = 20) viewed arrays 

made up of three Gabor patches that had 
distinct contrasts and orientations. 

• Task (random across trials): choose the stimulus 
with either the highest or lowest contrast. 

• Trial structure: sensory baseline (no task 
information) — frame-cue phase instructing the 
task (high/low) — decision phase — Go cue 
probing the choice.
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•  For multi-alternative choice, the brains deploy attention flexibly and selectively. 
•  Behavioural economics relies on eye-tracking to study information sampling in multi-alternative decision [1]. 
•  The role of covert attention (without eye movements) is not clear. 
•  Limitation of eye-tracking: Knowing where people fixate says nothing about what they think (e.g., does 

looking at A guarantees that B is not covertly considered at the same time in a comparative manner?)choice
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Computational principles underlying decision over N > 2 alternatives?
From binary to multi-alternative choice

RT
p(H over M)

RT

deliberation


