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Abstract 12 
 13 
Early foundational work in the decision sciences carefully balanced empirical observations 14 
and theoretical explanations. Dating back to Daniel Bernoulli, a handful of behavioral 15 
regularities observed in theoretical lotteries ignited the refinement of normative theories and 16 
the development of new descriptive frameworks of valuation and choice. However, more 17 
recent tendencies in behavioral economics and psychology place empirical observations on a 18 
pedestal: modern behavioral science has identified more behavioral biases than it has 19 
explained. Coupled with replication and reliability crises in experimental psychology, this has 20 
resulted in an explanatory gap in the field, in-between the descriptive and predictive levels. 21 
Here, we aim to close this explanatory gap by asking how choice biases can emerge from 22 
certain decision computations. We demonstrate that biased and irrational choice behavior may 23 
arise from multiple, equally viable mechanisms, such as relative value coding and selective 24 
information sampling. We posit that this “multiple realizability” problem highlights a broader 25 
issue: inferring mechanisms of complex behavior solely from behavioral measures is an 26 
underdetermined exercise. We propose that using time-resolved neural recordings to track 27 
how attention serially parses complex information during multiattribute, multialternative 28 
decisions can resolve this “multiple realizability” issue and arbitrate between competing 29 
mechanistic explanations of choice biases. 30 
 31 
1. Introduction 32 

 33 
A large body of research within the cognitive and decision sciences has established that 34 
human decisions are often influenced by factors that should rationally be ignored (De Martino 35 
et al., 2006; Kahneman & Tversky, 1984; Summerfield & Tsetsos, 2015; Tversky & Kahneman, 36 
1981). For example, we tend to stick with an energy plan because it is set as the default option 37 
(Baron & Ritov, 1994), we prefer volatile stocks when buying but dismiss them when selling 38 
(Shafir et al., 1993; Tsetsos, Chater, et al., 2012), or we choose salmon fillet over ribeye steak 39 
simply because we noticed that fish fingers are also available (Huber et al., 1982). These 40 
examples illustrate that choices are not solely determined by the properties of the available 41 
alternatives and the goals of the decision-maker but also by an array of normatively irrelevant 42 
factors including: the way the alternatives are presented, the framing of the choice, or the 43 
presence of dominated (inferior) alternatives in the choice-set (Usher et al., 2019).  44 

The observed sensitivity of human decisions to normatively irrelevant factors (reflected 45 
in choice biases) has had profound impact on the behavioral sciences, resulting in the 46 
distinction between normative (how should we decide) and descriptive (how do we decide) 47 
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theories of choice. One of the main goals of descriptive theories of choice is to specify how 48 
choice biases come about in the deciding brain. Achieving this goal can subsequently inform 49 
deeper multidisciplinary considerations, e.g., on why bias propensity varies among individuals 50 
(Aczel et al., 2015; Spektor et al., 2021) or across the lifespan (Parrish et al., 2024; Tentori et 51 
al., 2001); or on why biases have persisted despite evolutionary pressure for reward-52 
maximizing choices (Moran & Tsetsos, 2018; Tsetsos et al., 2016; Webb et al., 2021). 53 
Furthermore, choice biases have taken center stage in applied behavioral science, 54 
representing predictable blind spots that can be harnessed in interventions to induce 55 
behavioral change (Thaler & Sunstein, 2009). Precisely understanding the mechanisms that 56 
mediate choice biases can aid the development of targeted approaches that could bolster the 57 
limited effectiveness of extant “nudging” interventions (Maier et al., 2022). 58 

Despite the theoretical and applied importance of understanding the computational 59 
and neural mechanisms that lead to choice biases, existing theories of choice have not 60 
provided definitive insights. This is reflected in the multitude and disparity of frameworks 61 
proposed to explain choice biases, ranging from verbally formulated heuristics (Gigerenzer & 62 
Gaissmaier, 2011; Kahneman & Tversky, 1984; Shafir et al., 1993) and algebraic modifications 63 
of normative theories (Tversky & Kahneman, 1992; Tversky & Simonson, 1993) to Bayesian 64 
(Bhui & Xiang, 2021; Srivastava & Schrater, 2012) and dynamical models (Busemeyer et al., 65 
2019). To date, these disparate explanations of choice biases, often casted at different levels 66 
of analyses (McClelland, 2009), have not been comprehensively related to underlying decision 67 
mechanisms. In this chapter, we aim to close this gap by describing how explanations of 68 
hallmark choice biases can be situated along the processing stages that occur during decision-69 
making.  70 

We begin by clarifying the notion of choice bias and proceed to show that hallmark 71 
choice biases could fall out from computations occurring at almost any stage—including 72 
relative and non-linear value coding (Louie & De Martino, 2014), selective information 73 
sampling (Usher et al., 2019), and non-linear accumulation dynamics (Cavanagh et al., 2020). 74 
Given this “multiple realizability” issue, we then address how distorting mechanisms along the 75 
processing pathway can be better identified. We highlight that during complex decisions, 76 
information is sampled partially and serially before reaching the decision formation level; and 77 
propose that tracing this information flow with non-invasive high-temporal-resolution neural 78 
recordings as decisions unfold can considerably constrain mechanistic inferences. We 79 
conclude that a central goal in the cognitive and neural sciences should be to understand the 80 
principles that orchestrate information sampling during decision-making. 81 

 82 
2. Choice biases: innocuous and irrational 83 
 84 
From a normative standpoint, an optimal agent should always (or more likely, in the presence 85 
of behavioral stochasticity (Loomes & Sugden, 1995)) choose the most desirable course of 86 
action in any given situation (Summerfield & Tsetsos, 2015). Thus, a prerequisite of optimal 87 
behavior is the ability to value choice alternatives by transforming their objective properties 88 
into “desirability” (or utility) scores based on a set of criteria that represent the goals and needs 89 
of the agent at any given moment (Juechems & Summerfield, 2019). A longstanding question 90 
in the decision sciences is whether human choices comply with this notion of optimality. This 91 
has been hard to assess since, in real-life decisions, decision-relevant criteria are inherently 92 
subjective and opaque. To circumvent this issue, decision theorists have resorted to two 93 
distinct approaches: i) studying choice behavior in simplified scenarios where decision-94 
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relevant criteria can be objectively defined; ii) specifying a set of rules (or axioms) that utility-95 
maximizing agents must abide by. In the following, we define choice biases in relation to these 96 
two approaches. 97 
 98 
2.1 Innocuous biases 99 
To study human valuation and choice in a tractable way, researchers often rely on laboratory 100 
tasks with externally imposed objectives (Summerfield & Tsetsos, 2012). This approach has 101 
roots in the foundational years of probability theory, where theoretical lotteries were used to 102 
benchmark human behavior against statistical optimality (Stearns, 2000). In these cases, it 103 
can be assumed that the desirability of each lottery option is equivalent to the expected value 104 
of the corresponding payout distribution. Thus, statistically optimal agents should always 105 
choose the lottery with the largest expected value. However, even in these tractable situations, 106 
human choices depart from the statistical ideal. Consider a choice between two prospects A 107 
and B. Prospect A offers £40 for sure while prospect B offers £100 with 50% probability or £0 108 
otherwise. Although prospect B has a higher expected value (𝐸𝑉! = £40	vs. 𝐸𝑉" = £50), most 109 
people in this scenario will choose prospect A (Kahneman & Tversky, 1979) (Fig. 1A). This 110 
example illustrates that human valuation is sensitive to the variances of the payout 111 
distributions, which is not relevant for maximizing expected rewards. More broadly, human 112 
economic choices disclose several idiosyncrasies, such as risk (Mata et al., 2018) and 113 
skewness preferences (Olschewski et al., 2024) or aversion to losses (Novemsky & 114 
Kahneman, 2005). 115 
 Idiosyncratic biases are not specific to theoretical lotteries but can be encountered in 116 
any choice task entailing a transparently defined payoff structure. In perceptual choice tasks, 117 
participants observe sensory evidence and are asked to make choices based on a criterion 118 
defined by the experimenter (e.g., choose the rectangle with the larger area). In these tasks, 119 
humans and other animals exhibit several suboptimal tendencies that prevent them from 120 
attaining optimal performance. For instance, across consecutive decisions, they exhibit choice 121 
history biases (e.g., repeating or avoiding a previous choice) (Braun et al., 2018; Urai et al., 122 
2019); or, within a decision, they assign larger weight to information presented early in the trial 123 
(Tsetsos, Gao, et al., 2012). Similarly, in value-learning (bandit) tasks the objective of 124 
maximizing monetary reward is undermined by a list of suboptimal tendencies such as ignoring 125 
infrequent rewards or penalties (Hertwig et al., 2004), or overestimating the importance of 126 
extreme outcomes (Ludvig et al., 2014).  127 
 The presence of this type of choice biases in tasks with clearly defined objectives 128 
underlines that “desirability” is an inescapably subjective notion. That is, even when the task 129 
dictates maximizing economic value, people will not limit themselves to just that. Instead, in 130 
addition to accruing economic value, people seem to be gaining extra utility by avoiding risky 131 
prospects and losses, by repeating their previous choices, or by avoiding committing errors in 132 
perceptual choices at the expense of dwelling for too long on a given decision (Bogacz et al., 133 
2010). Although these tendencies lead to biased choices and curtail reward accrual, they may 134 
satisfy other latent, non-economic metrics. Thus, biased choice behavior can be “rationalized” 135 
as maximizing a stable, albeit idiosyncratic, utility function. Because the kind of choice biases 136 
we reviewed here do not rule out utility-maximizing behavior under a more liberal definition of 137 
utility, we deem them innocuous1. 138 

 
1 The point that choice biases reflect idiosyncratic preferences for non-normative aspects is rather 
theoretical, aiming to emphasise that the presence of certain biases does not falsify an expanded notion 
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 139 
 140 
Figure 1. Illustrative examples of innocuous and irrational choice biases. (A) A stable concave 141 
(diminishing returns) utility function predicts a risk-aversion bias in a choice between two hypothetical 142 
gambles with explicitly described rewards and probabilities. (B) Contextual preference reversal in 143 
multiattribute choice. Alternatives vary across two attributes. For illustration purposes, we assume that 144 
any two alternatives positioned on the negative diagonal are equally preferred in the respective binary 145 
choices. The attraction effect is a choice bias for a target alternative A over a competitor B occurring in 146 
ternary choices after an inferior decoy (DA) is introduced near the target. The similarity effect is a choice 147 
bias for the target A after a non-dominated decoy (SA) is introduced near the competitor B. The 148 
compromise effect is a choice bias for the all-average alternative C over A or B, occurring in ternary 149 
trials featuring another extreme alternative B. 150 
 151 
2.2 Irrational biases 152 
As described above, prominent choice biases can be absorbed into a putative utility function 153 
that the agent’s choices could be maximizing. Is the premise of utility-maximization even 154 
falsifiable? In their influential work on rational choice theory, von Neumann and Morgenstern 155 
demonstrated that the premise of utility-maximization is falsifiable: it can hold only if 156 
preferences (as revealed by overt choices) satisfy certain rationality axioms (Savage, 1972; 157 
von Neumann & Morgenstern, 2007). A stable utility function can be defined only when 158 
preferences satisfy these axioms. Accordingly, if preferences violate any of these axioms, then 159 
the utility-maximizing narrative falls apart. In the below we adopt a bird’s-eye-view and 160 
describe the core intuition underlying the axioms of rational choice theory. More detailed and 161 

 
of optimal (utility-maximizing) behavior. Practically, certain choice biases likely stem from processing 
bottlenecks in biological brains rather than from explicit preferences for non-normative aspects. 

0 40 100
Value in £

0

2

4

6

U
til

ity

0 4 8
Attribute 1 (economy)

0

4

8

At
tri

bu
te

 2
 (q

ua
lit

y)

A

B

DA

SA

A B
(consistent preferences) (inconsistent preferences)

Chosen

C

Utility = f(Value) = log(1+Value)

vs.

Risk aversion

Innocuous bias Irrational bias

Attraction effect

Similarity effect

Compromise effect
P(C) > P(A), in {A, B, C}

log(1+40) > 0.5 x log(1+0) + 0.5 x log(1+100)

£0 with 50% or
£100 with 50%£40 for sure

P(A) > P(B), in {A, B, D }A

P(A) = P(B), in {A, B}
P(C) = P(A), in {A, C}

P(A) > P(B), in {A, B, S }A



 5 

formal expositions of these axioms can be found elsewhere (Regenwetter & Davis-Stober, 162 
2012; Rieskamp et al., 2006). 163 
 Rational choice theory axioms are not concerned with the specific preferences of 164 
agents but with the internal consistency (or rationality) of those preferences (Allingham, 2002). 165 
Thus, they do not prescribe how choice alternatives should be mapped onto utilities; instead, 166 
they just ensure that this mapping does not change due to irrelevant factors. One such 167 
irrelevant factor is the choice framing (Kahneman & Tversky, 1984). Do preferences change 168 
when a choice is framed as “select the best” versus when it is framed as “reject the worst”? 169 
According to rational choice theory, in both frames, one should consider their needs and wants 170 
and assign utility scores to alternatives. In the “selection” frame the alternative with the highest 171 
score should be chosen, and in the logically equivalent “rejection” frame, the alternative with 172 
the lowest utility score should be eliminated. Thus, when two alternatives are available, 173 
selecting A coheres with rejecting B, and vice versa. However, it has been shown that when 174 
alternative A is mediocre (e.g., a not-so-expensive and dull holiday destination) and B is more 175 
extreme (e.g., an expensive but exciting destination) people tend to both select and reject the 176 
extreme alternative (Shafir, 1993; Tsetsos, Chater, et al., 2012). This behavioral pattern 177 
discloses inconsistent preferences and cannot be reconciled under the maximization of a 178 
stable utility function that rational choice theory anticipates. 179 
 A second factor that provokes inconsistent choice patterns is the composition of the 180 
choice-set. Following the rational choice schema, the utility assigned to an alternative should 181 
solely be a function of its inherent properties and the goals and needs of the decision-maker. 182 
The utility of an alternative should thus be independent of the properties of other alternatives 183 
that are available for choice (i.e., the independence-from-irrelevant-alternatives axiom). A 184 
logical consequence of this schema is that if A is preferred over B when only these two 185 
alternatives are offered, then A should still be preferred over B when a third alternative C is 186 
available for choice. However, it has been shown time and again—even in non-primate 187 
species including amoebae and bees (Latty & Beekman, 2011; Tan et al., 2015)—that 188 
preferences change as a function of the choice-set composition (Evangelidis et al., 2024). To 189 
illustrate, a preference for an all-inclusive holiday to Berlin (A) over an all-inclusive holiday to 190 
Rome (B) can reverse when a holiday to Rome where you must pay for breakfast (C) is 191 
introduced in the choice-set. In this example, the presence of the inferior alternative (C) boosts 192 
the desirability of its more similar alternative (B). This so-called attraction effect (Huber et al., 193 
1982) (Fig. 1B) and similar phenomena where preferences change as alternatives are added 194 
or removed from the choice-set, are collectively referred to as contextual preference reversals 195 
(Tsetsos et al., 2010). Unlike innocuous biases, the framing and choice-set preference 196 
reversals outlined here are puzzling as they cannot be “rationalized” under a utility-maximizing 197 
narrative. Therefore, we deem these choice biases irrational. An open question, which we will 198 
explore in the next sections, is whether innocuous and irrational biases have distinct or 199 
common mechanistic underpinnings. 200 
 201 
2.3 Limitations in existing accounts of choice biases 202 
Within the judgment and decision-making literature, mainstay accounts of biased behavior 203 
consist of ad-hoc formulations that effectively re-describe human behavior without providing 204 
deeper explanations. For example, the “take-the-best” heuristic posits that decisions are 205 
settled exclusively based on the most important cue or attribute (Gigerenzer & Goldstein, 206 
1996). Accordingly, it is assumed that people actively use this heuristic rule when making 207 
multiattribute decisions. In this case, the explanation (take-the-best heuristic) and the 208 
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explanandum (choice bias in favor of the alternative that is better in the most important 209 
attribute) are almost indiscernible. This issue is not exclusive to the heuristic and biases 210 
framework: in experience-based decisions (Hertwig & Erev, 2009) certain behavioral 211 
regularities (e.g., recency or ignoring rare events) are ascribed to homologue processing 212 
biases (i.e., underweighting early and rare events); or in algebraic models like in Prospect 213 
Theory (Kahneman & Tversky, 1979), the shape of psychoeconomic functions and the position 214 
of the reference point fit the patterns of human behavior but have no a priori motivation. Thus, 215 
extant influential accounts of choice biases stay too close to the observed behavioral effects, 216 
offering little explanatory depth. 217 

Here, we do not claim that ad-hoc accounts should be dispensed with as they provide 218 
a useful and abstract way to summarize how human behavior deviates from the normative 219 
expectations. It is even conceivable that certain ad-hoc formulations, like explicit loss-220 
aversion, reflect hardwired asymmetries in the way the brain processes information (Tom et 221 
al., 2007). Instead, we posit that this level of theorizing cannot readily provide an 222 
encompassing answer to the question: how do choice biases occur in the deciding brain? In 223 
the next section we sketch an alternative and deeper level of theorizing choice biases. 224 
 225 
3. Mechanistic explanations of choice biases 226 
 227 
Here we explore the idea that choice biases emerge from dynamic decision computations 228 
rather than stemming from a rigid set of ad-hoc rules. This approach can have multiple 229 
advantages. First, it can afford precise quantitative predictions, which can be valuable in 230 
predicting novel biases or in anticipating how people would respond in different contexts. 231 
Second, it can offer a natural interface between behavioral and neural levels (Gold & Shadlen, 232 
2007), enabling the understanding of altered decision-making during ageing or in 233 
neuropsychiatric disorders. Third, with certain decision computations serving adaptive 234 
functions in biological brains (Summerfield & Tsetsos, 2020), linking choice biases to these 235 
computations can help reconcile the normative-descriptive gap. Finally, a mechanistic 236 
framework can, in principle, offer unifying and parsimonious explanations. Multiple choice 237 
biases can arise from variations in a single or a minimal set of mechanisms, thereby reducing 238 
the dimensionality of the tangled ontology of behavioral biases (Hallsworth, 2023). 239 
 However,  to a large extent, mechanistic inferences are under-constrained by empirical 240 
data (Pirrone & Tsetsos, 2023), especially in relatively complex behavioral domains (e.g., 241 
multiattribute choices where choice biases abound). As a result, mechanistic models can 242 
become overparametrized and arbitrary (Anderson, 2013), often ending up as ad-hoc as 243 
heuristic formulations. Indeed, several influential multiattribute models can be criticized for 244 
being overly flexible, combining algebraic ad-hoc and dynamic (and biologically grounded) 245 
mechanisms to explain preference reversals (Roe et al., 2001; Trueblood et al., 2014; Usher 246 
& McClelland, 2004). Even though we acknowledge the merit and influence of these more 247 
complex models (for a comprehensive review see Busemeyer et al., 2019), we here consider 248 
choice biases within the minimal evidence-accumulation framework developed for simple 249 
perceptual decisions. We then expand this framework with a small set of additional 250 
mechanisms intended to help agents navigate the rich information involved in multiattribute, 251 
multialternative decisions. 252 
 253 
 254 
 255 
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3.1 Information processing during decision-making 256 
In a very generic description of the decision process, choices arise from first assigning utilities 257 
to available alternatives (valuation) and then selecting the alternative that has the highest utility 258 
(comparison) (Platt & Plassmann, 2014; Vlaev et al., 2011). In most choice theories in 259 
psychology and economics, valuation and comparison are formulated in a stylized fashion 260 
using algebraic operations and functions (such as weighted summation, Keeney & Raiffa, 261 
1993; or the softmax function). In contrast to these static and stylized formulations, 262 
representations and computations in biological brains are shaped by noisy and dynamical 263 
processes (Miller et al., 2024). What are the dynamical processes underpinning decision-264 
making? 265 

Akin to biologists using the Drosophila as their model organism for studying more 266 
complex organisms, psychologists and neuroscientists have used simple sensorimotor 267 
decisions to approximate generalizable decision processes (Shadlen & Kiani, 2013). 268 
Behavioral and neural data (Platt & Glimcher, 1999; Ratcliff & McKoon, 2008; Yang & Shadlen, 269 
2007) indicate that during simple decisions—such as categorizing an ambiguous image as a 270 
face or a house or determining the dominant direction of motion in a random dot kinematogram 271 
(Heekeren et al., 2008)—noisy information is sampled and accumulated over time into a 272 
growing confidence signal, until a criterial degree of confidence (or boundary) is reached. 273 
Following the law of large numbers, accumulation over time alleviates the detrimental 274 
influence of noise and improves decision accuracy. The boundary on confidence controls how 275 
long accumulation lasts for, effectively determining how the observer trades off the speed and 276 
accuracy of the decision (Bogacz et al., 2010).  277 

Within this accumulation-to-bound framework, valuation and comparison are dynamic 278 
and temporally multiplexed processes. Valuation arises from representing2, sampling3 and 279 
accumulating noisy evidence (held in different accumulators) in favor of the available choice 280 
alternatives (Fig. 2A). Choices are made once the activity of one of the accumulators exceeds 281 
the decision boundary, thereby implementing the comparison operation (Lo & Wang, 2006). 282 
The specifics implementation of the comparison process can vary across models, particularly 283 
in the form and degree of competition among the accumulators (Teodorescu & Usher, 2013). 284 
Having outlined the fundamental mechanisms implicated in simple decisions, we next ask how 285 
these mechanisms can lead to choice biases. 286 
 287 

 
2 In any decision-task, external information needs to be mapped onto decision-relevant information. For 
example, if the task is to determine the rectangle that has the largest width, then information about the 
height or color of the rectangles is not relevant and needs to be discarded. Neural representations are 
subject to non-linear transduction, typically captured by a concave (e.g., logarithmic) transformation of 
the objective information (see Weber-Fechner law). 
3 Decision tasks can entail either dynamic or static information. Dynamic information is naturally 
chunked into monetary samples, which are subject to serial accumulation. In static tasks, such as a 
face/house discrimination based on an ambiguous photograph, the assumption is that internal sampling 
turns takes noisy snapshots of the external information, which are then serially accumulated over time.  
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 288 
 289 
Figure 2. Choice biases within a generalized mechanistic framework. (A) Schematic of the processing 290 
hierarchy in decision-making: from stimulus representation to sampling, evidence accumulation, and 291 
ultimately, choice. (B) The leaky competing accumulator (LCA) model architecture. “I” denotes lateral-292 
inhibitory connections and “E” self-excitatory connections. With self-excitation being < 1, information is 293 
subject to dissipation (leakage). The balance between leakage and lateral inhibition strength controls 294 
the profile of temporal weighting (see main text). (C) Risk preferences within a bounded accumulation 295 
framework. In the example scenario a high-variance (red) and a low-variance (blue) alternative compete 296 
for choice. Following an initial pre-decisional period (left relative to the dashed vertical line), evidence 297 
is accumulated in two accumulators that are weakly coupled with inhibition. Under the selection 298 
(rejection) framing, once an accumulator breaches the upper (lower) boundary a selection choice is 299 
made in its favor. The high-variance accumulator has large deflections and thus exceeds both 300 
boundaries more often than the low-variance accumulator. This predicts risk-seeking under selection 301 
and risk-aversion under rejection. 302 

 303 
 304 

3.2 Choice biases within the standard mechanistic framework 305 
Can the standard mechanistic framework outlined above produce innocuous and irrational 306 
choice biases? At first glance, this seems like a tall order for accumulation-to-bound models 307 
because they essentially stem from the framework of optimal sequential hypothesis testing 308 
(Bogacz et al., 2006; Wald, 2004; Wald & Wolfowitz, 1948). However, as described above, 309 
accumulation-to-bound models can vary in their implementational details. Due to such 310 
variations, some accumulation-to-bound models can deviate from statistically optimal 311 
computations.  312 

One characteristic example of suboptimal computations is the non-uniform temporal 313 
weighting of evidence emerging from the accumulation dynamics in competing accumulator 314 
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models. In the leaky competing accumulator model (Usher & McClelland, 2001), the activity 315 
of a given accumulator increases with the corresponding incoming evidence and decreases 316 
due to self-dissipating activity (or leakage) and lateral inhibition coming from competing 317 
accumulators (Fig. 2B). When the leakage and inhibition are balanced, the model mimics the 318 
diffusion model showing equal sensitivity to early and late evidence (Bogacz et al., 2007). 319 
When the inhibition is stronger than the leakage, the model operates in an impulsive regime, 320 
exhibiting larger sensitivity to early evidence (primacy) through strong winner-take-all 321 
dynamics. Conversely, when the inhibition is weaker than the leakage, the model becomes 322 
forgetful or “leaky”, being more sensitive to late evidence (recency) (Tsetsos, Gao, et al., 323 
2012). Similar temporal weighting profiles fall out from variations in the excitation/inhibition 324 
ratio in a biophysical cortical circuit model of evidence accumulation (Lam et al., 2022).  325 

Non-uniform temporal weighting can lead to innocuous choice biases when decision-326 
relevant information is processed in a fixed order. Consider the choice between an affordable 327 
but dull holiday destination (A) and an expensive and exciting destination (B). If the price 328 
information is conveyed first, agents with a primacy weighting profile will consistently choose 329 
A. Interestingly, non-uniform temporal weighting can lead to irrational choice biases if the 330 
framing of the task or the choice-set composition alters the order in which information is 331 
processed. For example, an agent with a primacy profile will disclose a preference reversal if 332 
they first process positive information (B is exciting) in the “select the best” framing and 333 
negative information (B is expensive) in the “reject the worst” framing. Thus, deviations from 334 
statistically optimal computations can open the door to both innocuous and irrational choice 335 
biases, depending on certain assumptions about the order in which information is considered. 336 
Irrespective of assumptions about the order of information processing, how can the standard 337 
mechanistic framework produce well-established choice biases? 338 

We consider the innocuous preferences that humans have towards less or more 339 
variable alternatives. Empirical findings suggest that people are risk-averse in description-340 
based lotteries but risk (variance)-seeking when value information is experienced sequentially 341 
(Tsetsos, Chater, et al., 2012). For presentation purposes, we describe both choice biases 342 
using a hypothetical choice between two holiday destinations. A preference for the mediocre 343 
holiday destination A over the more extreme one B (risk-aversion) can be explained by a 344 
concave transduction function that maps objective values onto internal subjective counterparts 345 
(see also footnote 2 and Fig. 1A). This is the classical explanation of risk-aversion adopted in 346 
expected-utility theory and prospect theory (Kahneman & Tversky, 1979). Beyond this rather 347 
rigid representational distortion, in Figure 2C we show how the opposite risk-seeking bias 348 
(Tsetsos, Chater, et al., 2012) naturally emerges within a minimal accumulation-to-bound 349 
framework involving two independent (or weakly competing) accumulators racing towards a 350 
boundary. Due to its more variable input, the accumulator corresponding to the more extreme 351 
alternative B shows larger deflections. These deflections translate into an increased likelihood 352 
of crossing the decision boundary. Similarly, under a rejection frame—and assuming that 353 
elimination happens when an accumulator breaches a lower boundary—B will be more 354 
frequently eliminated resulting in an irrational (framing) reversal of risk preferences (Shafir, 355 
1993). 356 

A preference for the more variable alternative (B) can also arise within a biophysical 357 
cortical model of evidence accumulation due to convex evidence transduction and non-linear 358 
accumulation dynamics (Cavanagh et al., 2020). Although it is not obvious how the biophysical 359 
model could produce a framing reversal of this bias, this model can produce a choice-set 360 
reversal. In choices among three alternatives that vary in their decision values, increasing the 361 
value of the worst alternative improves the relative discrimination accuracy between the two 362 
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highest-value alternatives (Chau et al., 2014) (but see Cao and Tsetsos (2022) for an 363 
alternative interpretation of this effect). This positive distractor effect violates the 364 
independence-from-irrelevant-alternatives principle. The biophysical model captures the 365 
positive distractor effect because increasing the value of the worst alternative raises the level 366 
of the pooled inhibition. This, in turn, adjusts the accumulation dynamics to a regime closer to 367 
optimal, approximating the diffusion model that achieves the highest discrimination accuracy 368 
(Bogacz et al., 2007). 369 
 370 
3.3 Choice biases within an extended mechanistic framework 371 
We showed that some innocuous and irrational choice biases can emerge within the standard 372 
accumulation-to-bound framework. However, this framework cannot readily explain 373 
multiattribute choice-set reversals (Fig. 1B). Notably, the standard mechanistic framework was 374 
built around simple choice tasks, where the amount of decision-relevant information typically 375 
falls below the processing capacity of the cognitive system (Donner et al., 2009; Gold & 376 
Shadlen, 2007). However, choice biases, especially irrational ones, occur in more complex 377 
decision domains involving multiple (more than two) alternatives that often vary in more than 378 
one attribute (Busemeyer et al., 2019). In these cases, parsing information in parallel becomes 379 
impossible and the cognitive system needs to find ways to efficiently navigate the increased 380 
complexity given its processing bottlenecks. Below, we discuss two classes of mechanisms 381 
that can help the brain efficiently process large amounts of information. As a byproduct, these 382 
mechanisms enable dynamic and context-dependent valuation, and choice biases ensue. 383 
 384 
Relative coding 385 
The first class of mechanisms, collectively referred to as relative coding (Summerfield & 386 
Tsetsos, 2020), entails dynamic and non-linear distortions impacting the representation of 387 
decision-relevant information. More specifically, in contrast to static and context-independent 388 
transduction non-linearities (see footnote 2), relative coding schemes adjust representations 389 
as a function of the temporal (i.e., the recent history of stimulation) or the immediate (i.e., the 390 
choice-set) context. The exact form of these adjustments is motivated by the theory of efficient 391 
neural coding widely evidenced in sensory systems (Simoncelli, 2003). This theory states that 392 
neurons minimize redundancy by increasing their representational resolution for the most 393 
frequently occurring stimuli (Barlow, 1961). Below we provide an overview of prominent 394 
relative coding schemes with regards to choice biases. 395 

In the divisive normalization model, the “raw” utility of each alternative is divided by the 396 
sum of the raw utilities of all alternatives in the choice set (Louie et al., 2013). Therefore, the 397 
model predicts that increasing the utility of the worst alternative reduces the discrimination 398 
accuracy between the two high-utility alternatives, a negative distractor effect at odds with the 399 
independence-from-irrelevant-alternatives axiom (but see Gluth et al. (2020) for a failure to 400 
replicate this effect). In the range normalization model (Rustichini et al., 2017), raw utilities are 401 
divided by the range of raw utilities (max−	min) encountered in the choice-set, that way 402 
producing a positive distractor effect (Fig. 3). The range normalization principle together with 403 
auxiliary assumptions can also explain contextual preference reversals in multiattribute 404 
choice, including the attraction, the similarity, and the compromise effects (Soltani et al., 2012) 405 
(Fig. 1B). These multiattribute effects can also be captured by a recurrent version of the 406 
divisive normalization model, where the attribute value of an alternative is divided by itself plus 407 
the mean choice-set values on that attribute (Dumbalska et al., 2020). Practically, relative 408 
coding schemes implement context-dependent utility functions thereby generating irrational 409 
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choice biases. One downside of relative coding schemes is that they afford compressive 410 
representations. Thus, these models cannot readily capture the risk-seeking bias obtained in 411 
decisions from experience (Tsetsos, Chater, et al., 2012). 412 

 413 
 414 

 415 
 416 
Figure 3. Distractor effects under relative coding schemes. (A) In a ternary choice task, observers 417 
choose one alternative among three candidates (A, B, and a distractor D) on each trial. The distractor’s 418 
value is always lower than the values of targets A and B, so it should not influence the choice between 419 
A and B, as predicted by the baseline model in panel B. In a thought experiment, observers perform 420 
this task in two additional contexts where the option values are multiplicatively scaled up by 3 or 5. This 421 
manipulation creates an ideal situation for testing prominent normalization theories. The distractor effect 422 
is defined as the change in sensitivity (slope measure of a Gaussian cumulative-density-function fit to 423 
choice probabilities) to the value difference between A and B (fixed), modulated by changes in the 424 
distractor value. (B) Divisive normalization assumes the option value is transformed into the mean firing 425 
rate μi = KVi/(σh + ΣwVj), where Vi is the raw value of the option under consideration, K > 0, σh > 0, and 426 
w > 0 represent gain, semi-saturation, and weight, respectively (Louie et al., 2013). When w = 0, the 427 
model reduces to the baseline version, meaning the value coding is independent of other options in the 428 
choice-set. Range normalization assumes μi = KVi/(σh+ w(max(Vj) - min(Vj))), meaning the denominator 429 
involves the range of the values rather than the summation. Both normalization models predict an 430 
increase in the distractor effect as the multiplicative factor increases, but they predict the distractor 431 
effect in opposite directions. These very specific predictions can be contrasted with the predictions of 432 
other non-normalization models of distractor effects (e.g., decision-by-sampling). Code for reproducing 433 
this figure can be found at: https://github.com/YinanCao/bookchapter 434 
 435 
Selective sampling 436 
The second class of mechanisms we review operate downstream the early distortions that 437 
relative coding schemes induce. These mechanisms govern selective information sampling 438 
by determining, at each moment, which aspects of the available information should be passed 439 
on for accumulation. Selective information sampling is a pragmatic solution to the challenge 440 
posed by the rich information involved in multialternative and multiattribute decisions. Indeed, 441 
it is commonly observed that during complex decisions, attention serially traverses across 442 
attributes and alternatives (Fiedler & Glöckner, 2012; Russo & Dosher, 1983), driving the 443 
online construction of preferences (Slovic, 1995). Recent work has incorporated attentional 444 
fluctuations into the accumulation-to-bound framework by positing that the gain of processing 445 
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increases for attended items (Krajbich et al., 2010). However, the principles that orchestrate 446 
these attentional fluctuations, and the reasons why sampling can end up being partial and 447 
biased, remain unknown. Below we review proposals that infer principles of information 448 
sampling through explaining contextual preference reversals. 449 
 Various models of multiattribute choice assume that only one attribute can be 450 
processed at a time, with attention stochastically fluctuating across attributes over time (Roe 451 
et al., 2001; Turner et al., 2018; Tversky, 1972). More recent models additionally assume that 452 
within each attended attribute, only a subset of the available alternatives is considered at a 453 
given instance (Wollschläger & Diederich, 2012). In the decision-by-sampling multiattribute 454 
model (Noguchi & Stewart, 2018), two alternatives are compared within each sampled 455 
attribute, with more similar alternatives forming comparison pairs more frequently. The binary 456 
outcome of the comparison updates the “counting” accumulator of the winner. Due to these 457 
principles and some auxiliary assumptions, the model can explain the attraction, similarity, 458 
and compromise effects (Fig. 1B). A recent adaptation of the decision-by-sampling framework 459 
can also explain a positive distractor effect in single-attribute decisions (Tohidi-Moghaddam & 460 
Tsetsos, 2024). Another sampling model, the selective integration model, assumes that within 461 
a focused attribute, attentional selection prioritizes the processing (i.e., assigns a larger gain) 462 
of high-valued alternatives at the expense of low-valued alternatives, a principle that leads to 463 
the attraction and other contextual preference reversal effects (Tsetsos, 2012; Tsetsos, 464 
Chater, et al., 2012) including violations of transitivity (Tsetsos et al., 2016). The selective 465 
integration model also predicts risk-seeking that reverses under a rejection frame where 466 
observers prioritize the processing of lower values (Usher et al., 2019). Taken together, in the 467 
models described above, selective sampling leads to innocuous and irrational choice biases 468 
by prioritizing the processing of certain choice aspects at the expense of others. 469 
 470 
4.  Identifying the mechanisms underpinning choice biases 471 

 472 
The previous section highlights that, even within a limited search space of mechanisms, there 473 
are multiple and equally viable4 explanations for choice biases situated at all stages of the 474 
processing pathway (Table 1). This is a stark reminder that the cognitive and neural 475 
mechanisms of more complex behaviors are grossly underdetermined by empirical data 476 
(Pirrone & Tsetsos, 2023). How can the mechanisms underlying the various choice biases be 477 
securely identified?  478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 

 
4 Here, arbitrating competing mechanisms based on auxiliary criteria, like biological plausibility or 
normative justification, seems fruitless. For instance, given efficient codes in the brain, two competing 
schemes, divisive and range normalization, seem equally biologically plausible. Similarly, while relative 
coding schemes can maximize information transfer while keeping metabolic costs bounded, the 
selective integration can maximize a different metric, namely decision accuracy in the presence of late 
noise (Tsetsos, K., Moran, R., Moreland, J., Chater, N., Usher, M., & Summerfield, C. (2016). Economic 
irrationality is optimal during noisy decision making. Proc Natl Acad Sci U S A, 113(11), 3102-3107. 
https://doi.org/10.1073/pnas.1519157113).  
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Table 1. Summary of the standalone predictions of various mechanisms in relation to innocuous and 486 
irrational choice biases. “R” stands for representation, “S” for sampling, and “A” for accumulation. “?” is 487 
inserted when certain effects have not been adequately explored in relation to certain choice biases. 488 
 489 

Mechanism                       Choice biases    
  Risk-

seeking 
(under 
selection) 

Risk-
aversion 
(under 
selection) 

Framing 
risk-
reversal 

Negative 
distractor 

Positive 
distractor 

Multiattribute 
preference 
reversals 

Stable non-
linear function 
(R) 

  
 

     

 Convex 
 

Yes No No No No No 

 Concave No Yes No No No No 
Relative value 
coding (R)  

       

 Divisive 
normalization 
 

No Yes ? Yes ? No 

 Range 
normalization 
 

No Yes ? No Yes Yes 

 Recurrent 
divisive 
normalization 

No Yes ? ? ? Yes 

Selective 
sampling (S) 

       

 Selective 
integration 
 

Yes No Yes ? ? Yes 

 Decision-by-
sampling 

? ? ? No Yes Yes 

Non-linear 
accumulation 
(A) 

       

 Bounded 
accumulator 
 

Yes No Yes No No No 

 Biophysical 
cortical circuit 

Yes No ? No Yes No 

        
 490 
 Identifying the mechanisms that underlie a cognitive process requires the ability to 491 
experimentally manipulate or observe the process input while simultaneously observing the 492 
output at the behavioral and neural levels. As we alluded to in previous sections, this approach 493 
is exemplified in the study of sensorimotor decisions, where the use of well-controlled 494 
psychophysical stimuli have uncovered the neural underpinnings of perceptual decision-495 
making (Gold & Shadlen, 2007). However, in multiattribute choice problems—which entail 496 
information across different attributes and require comparisons between multiple 497 
alternatives—the input to the decision process is not under experimental control. Instead, due 498 
to the rich information exceeding the parallel processing capacities of the cognitive system, 499 
attention can voluntarily fluctuate over time in numerous different ways (i.e., examining one 500 
alternative on all attributes at a given time, dividing attention between two alternatives, 501 
focusing on all alternatives in one attribute etc.). Observing these fluctuations is necessary to 502 
uncover the flow of the input that drives the decision-making process. In turn, knowing the 503 
dynamical input of the decision process can radically constrain mechanistic inferences and 504 
answer how choice biases come about. Simply put, understanding how the brain processes 505 
information requires knowing what information it processes. 506 
 Mainstay approaches have attempted to empirically characterize information sampling 507 
using eye-tracking techniques. However, interpreting eye movements and fixations is not 508 
straightforward in the context of decision-making tasks. Eye movements can also correspond 509 
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to operations unrelated to the decision-making process (i.e., merely reading the information), 510 
which cannot be dissociated from decision-related oculomotor activity (i.e., accumulating the 511 
fixated information). Instead, it is often asserted that only fixations in the middle part of the 512 
deliberation are decision-related, while early fixations correspond to the “scanning” stage and 513 
late fixations to the “validation” stage (Bettman & Kakkar, 1977). Importantly, even if decision-514 
related fixations could be dissociated from unrelated operations, knowing where people fixate 515 
does not say much about what they think. Does looking at the price of holiday destination A 516 
guarantees that the price of holiday B is not covertly considered at the same time in a 517 
comparative manner? 518 
 519 

 520 
Figure 4. Decoding the locus of spatial attention using M/EEG. (A) In the localizer task, a checkerboard 521 
patch appears at one location on each trial while participants fixate centrally and press a button as soon 522 
as the fixation cue changes color (a rare event: ~10% of trials). The encoding-decoding model (IEM) 523 
involves three main steps. First, optimal neural weights are estimated using a linear model that maps 524 
multi-channel M/EEG activities onto hypothetical spatial channels (rectified sinusoids). The M/EEG 525 
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amplitude measured at each sensor during the localizer task (“Training data”) is modelled with spatial 526 
channels, each selectively tuned to a different angular position. Next, the encoding model is inverted to 527 
estimate the channel responses from the pattern of M/EEG signals across the scalp in another task 528 
(“Test data”), such as multi-alternative decision-making or a classic bandit task in reinforcement 529 
learning. Finally, neural gains projected spatially across the stimulus space are reconstructed for each 530 
single trial. (B) Decoding performance revealed by training IEM on neural data vs. concurrent eye-gaze 531 
data in the spatial localizer task. Upper panel: Topography shown as PCA loadings that maximally 532 
differentiate between the three spatial stimulus locations, indicating where the neural activation patterns 533 
across the scalp best diversify across these locations. Cross-validation shows that the IEM trained on 534 
neural signals exhibits excellent and highly reliable decoding performance, peaking around 140 to 170 535 
ms after stimulus onset, and is consistent across individual locations. In stark contrast, because the 536 
localizer task prohibits eye movement, IEM trained on eye positions contains no decodable information 537 
about stimulus locations (lower panel). This demonstrates that the method reliably captures covert 538 
neural processes and neural gain modulation in the visual-parietal regions. 539 
 540 
 Thus, eye-tracking techniques are limited to overt attention, while the computational 541 
role of the tracked measures is unclear. What has been missing is a way to track both the 542 
locus of attention (overt and covert) and at the same time the state of the accumulators as 543 
complex decisions take shape. Recent work from our lab (Siems et al., 2023) and others 544 
(Mostert et al., 2018) has offered new possibilities for continuously tracking the locus of covert 545 
spatial attention using non-invasive neural recording techniques that have high temporal 546 
resolution (magneto/electro-encephalography (M/EEG)). This relies on a dedicated functional 547 
localizer task and an encoding model that is inverted to estimate the locus of attentional 548 
allocation on a single trial basis from the pattern of M/EEG signals across the scalp in another 549 
task, such as multialternative decision-making or a classic bandit task in reinforcement 550 
learning (Fig. 4A). The key technical advantage of this approach is the clear dissociation of 551 
covert processes from oculomotor “contaminations”, with the spatial location decoding of 552 
attention being robust across multiple locations and unaffected by eye gaze shifts, no matter 553 
how minuscule they are (Fig. 4B). Combining the tracking of covert attention with well-554 
established M/EEG signals that track the state of decision accumulators (e.g., the beta-band 555 
lateralization in parietal and pre-motor cortices) (Donner et al., 2009; O'connell et al., 2012) 556 
can reveal regularities and biases in information sampling (Siems et al., 2023), decisively 557 
constraining mechanistic inferences about the general decisions processes as well as those 558 
that generate innocuous and irrational choice biases. 559 
 560 
5.  Conclusions 561 

 562 
Research in behavioral economics and psychology has identified several choice biases that 563 
still lack conclusive mechanistic explanations. In this chapter, we explored how choice biases 564 
can be mapped onto the neural and computational mechanisms underlying decision-making. 565 
Using as our starting point the standard accumulation-to-bound framework developed for 566 
simple decisions, we described how choice biases can emerge from decision computations 567 
throughout the processing pathway: from representing, to sampling, to accumulating decision-568 
relevant information. While non-linear accumulation dynamics within the standard 569 
accumulation-to-bound framework can explain some choice biases, a more complete 570 
explanation of irrational preference reversals requires invoking relative coding at the 571 
representation level or selective information sampling. Given that relative coding and selective 572 
sampling are both descriptively adequate, biologically plausible, and normatively motivated, 573 
distinguishing between these two types of mechanisms seems impossible. This resonates with 574 
the broader issue that identifying the mechanisms underlying complex decision-making is 575 
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underdetermined, given that the effective input to the decision process is opaque and 576 
intractable with conventional process tracing techniques. We outlined how using non-invasive 577 
time-resolved neural recordings can track attentional fluctuations during decision-making, that 578 
way measuring the effective decision input feeding to downstream decision computations. 579 

We argue that observing how information is being sampled during complex decisions 580 
can unlock the mechanistic understanding of puzzling behavioral regularities. As we described 581 
in this chapter, non-linear accumulation dynamics can lead to non-uniform temporal weighting 582 
of information (Tsetsos, Gao, et al., 2012). Across these lines, more recent findings suggest 583 
that evidence accumulation is not simply a feed-forward process, with the state of downstream 584 
accumulators biasing the way incoming evidence is weighted (Talluri et al., 2018). Thus, with 585 
information being unequally weighted over time, the order in which information is being parsed 586 
can be the major determinant of choice. If choice-set or framing manipulations do not 587 
systematically alter the order of information sampling, then relative coding computations would 588 
appear necessary to explain irrational choice biases. However, if framing and choice-set 589 
manipulations systematically alter the order of information processing, then puzzling choice 590 
biases could simply result from a combination of non-linear accumulation dynamics and 591 
specific patterns of information sampling (presumably consistent with extant sampling 592 
proposals, such as selective integration and decision-by-sampling). In this latter case, better 593 
understanding the principles and mechanisms that orchestrate information sampling during 594 
decision-making would become a critical new goal in the cognitive and decision sciences. 595 
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