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1 Supplemental methods

1.1 Extracting input-output mapping components for each hierarchical level

We apply singular value decomposition (SVD) to the dataset’s input-output correlation matrix to
extract the component of the input-output mapping for different hierarchical levels. Suppose the
desired (target) output matrix is given by Y as shown in the main paper Fig. 1b, and input matrix
is X where examples are placed in columns. In X, each object’s perceptual representation xµ (a
column vector, where µ = 1...P indexing objects) is encoded by a one-hot input vector (Kronecker
delta δµi). Thus, the input-output correlation matrix is Σyx = YXT . We use SVD on Σyx, i.e.,
Σyx = USVT , which results in three key elements fully characterizing the input-output mapping to
be learned (visualized in Supp. Fig. 1). For the case of hierarchically structured data from a binary
tree, the SVD structure conforms to hierarchical distinctions in the dataset [4]. The first element is
U, a feature-synthesizer matrix in which each column (a particular semantic dimension or ‘mode’)
contains positive (negative) values for semantic features that objects categorized along this mode do
(do not) possess. The second element is S, a singular value matrix that has nonzero values only on
the diagonal, and these values are arranged in a descending order. And the last element is VT , whose
rows are object-analyzer vectors, whereby a binary code is assigned to classify objects according to
each semantic mode (e.g., the 2nd row of VT indicates the first 4 objects are plants, while the last 4
objects are animals, see Fig. 1b in the main paper).

To compute the strength of a network’s input-output mapping for these hierarchical distinctions
(Fig. 2 of the main paper), we explicitly use the two orthogonal matrices, U and V, to compute the
“effective” singular values as Ŝ = UT ŷxTV. The diagonal elements of Ŝ then encode the strength of
the mapping at different hierarchy levels. The off-diagonal elements, representing coupling between
different hierarchy levels, are not necessarily zero in general; however, under the assumptions that
learning is sufficiently gradual (small learning rate), and the initial off-diagonal elements in Ŝ are
zero, then the dynamics of gradient descent will remain decoupled. In what follows, we show through
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Supplementary Figure 1: SVD of input-output correlation matrix Σyx reveals semantic distinctions
(modes) that mirror the hierarchical taxonomy.

simulations that modes in both layers remain approximately decoupled more broadly in our space of
learning rules throughout the course of learning under this assumption of decoupled initial states.

For standard error-corrective learning based on gradient descent, the weight updates for the first and
second layer can be computed as

1

λ
∆W1 = WT

2 (y − ŷ)xT (1)

1

λ
∆W2 = (y − ŷ)xTWT

1 . (2)

where λ is a small learning rate (λ � 1), and ŷ = W2W1x is the matrix of predicted outputs.
Following [4], we replace W2 and W1 by W2 and W1, respectively, such that:

W1 = RW1VT (3)
W2 = UW2RT (4)

where R is an arbitrary orthogonal matrix i.e., RTR = I. Here, simulations shown in Supp. Fig. 2
reveal that the matrices W2(t) and W1(t) remain approximately diagonal under the learning dy-
namics, such that modes are approximately decoupled throughout learning when starting from small
random weights. As a result, the learning dynamics of the overall input-output map of a network is

W2(t)W1(t) = UW2(t)W1(t)VT , (5)
(6)

and the overall strength of semantic modes can be extracted from the diagonal of the matrix Ŝ,

Ŝ(t) = W2(t)W1(t) = UTW2(t)W1(t)V. (7)

1.2 Other forms of input structure

In the main paper, we assume the input representations x to be one-hot vectors (and we also assume
that the number of input neurons is the number of input patterns, Ni = P ). The task is to link
each object’s perceptual representation (xµ, where µ = 1...P ), encoded by a one-hot input vector
(Kronecker delta δµi), to its set of associated binary properties. That is, simple input classes must be
mapped to semantically rich output properties. We interpret the one-hot input vector for each object
as a sparse orthogonal code for object identity such as those might exist at the top of the cortical
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Supplementary Figure 2: W1(t) and W2(t) contain decoupled modes over the course of learning for
most learning algorithms defined on the 2D space (except the 2 algorithms at the bottom (η = −0.1,
γ = ±1) where simulations do not converge satisfactorily, also see Supp. Fig. 3).
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Supplementary Figure 3: Frobenius norm of training error at the end of training. The black area
(lower-right corner) = nan where the optimization completely failed. Note that there are several areas
(e.g., upper-left corner and some points within anti-Hebbian learning) where the error did decrease,
but not converge to near-zero within 10,000 training epochs.

3



cProgressive	differen-a-on Stage-like	transi-ona b Illusory	correla-on

Gradient		
Descent

Hebbian

Contras-ve	
Hebbian

quasi-Predic-ve	
Coding

An--Hebbian

#	of	“stages”

Epochs

a.u.

Supplementary Figure 4: Learning dynamics under different learning rules in networks with an
arbitrary orthonormal multi-dimensional input matrix.

visual hierarchy (or in a traditional vision deep network’s classification layer). Our setting is in
some ways a mirror of standard deep network approaches modeling the visual pathway (in primates
in particular), which typically have complexly structured input features that are disentangled into
one-hot classification outputs. Also, these whitened input representations are widely used as a result
of pre-processing steps, i.e., inputs undergo a preprocessing step in which the stronger inputs are
strengthened and the weaker inputs are weakened. There has been evidence that the dentate gyrus,
through which inputs pass en route from the neocortex to the hippocampus, performs a computational
function that resembles pattern separation, making the sensory inputs sparser and less overlapping
[3, 2].

However, it seems critical to demonstrate that our framework is robust against a modification of
this assumption about input structure. Here, we show that the conclusions presented in the main
paper remain unchanged even if we relax the assumption of one-hot vectors (which are similar
to grandmother-cell neurons: each object is represented by a dedicated single neuron). We use a
non-localist, distributed representation in which the vectors xµ form an orthonormal basis for the
input-layer activity patterns. The differences in learning dynamics across different learning rules
within the 2D space are robust against the shift from localist assumption to the current distributed
assumption (Supp. Fig. 4). Thus, the localist assumption is not necessary, and is adopted only for
simplicity and interpretability.

1.3 Choice of metric for progressive differentiation

For progressive differentiation, we had investigated several alternatives (such as a normalized time
lag divided by the overall learning speed) before settling on our metric (mean time lag in paper Fig.
2a). Consider Supp. Fig. 5. These settings both show qualitatively similar progressive differentiation,
which is captured by our mean lag metric. Further dividing by the time to learn the smallest mode
would make the γ < 0 case appear much less stage-like, because the overall learning rate is faster
for γ > 0 but slower for γ < 0 (notably it is not simply determined by the absolute value of γ). We
found this normalization would make the 2D-map visualization unintuitive.

1.4 Network initialized from random weights of large norm

The results presented in the main text focus on the setting of “tabula rasa” learning where initial
weights are very small. Here we note that initialization can dramatically influence learning dynamics.
Gradient descent learning initialized with large random weights no longer exhibits progressive
differentiation, stage-like transitions, or illusory correlations (Supp. Fig. 6). Strong anti-Hebbian
learning (η < 0) still exhibits the differentiation between learning speeds of hierarchical categories
and semantic illusions. However, no stage-like transitions are found in any of the learning rule
initialized with large random weights.

1.5 Quasi-Predictive Coding inhibits hidden-layer activity via negative top-down feedback

Here we show that the quasi-predictive coding algorithm, when trained as an autoencoder, exactly
cancels feedforward activity with top-down inhibition under the assumption of minimum norm weight
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Supplementary Figure 5: Learning trajectories for two algorithms: γ = 1 (contrastive Hebbian) vs.
γ = −1 (quasi-predictive coding). Notably, overall learning speed is not simply determined by the
absolute value of γ): the overall learning rate is faster for γ > 0 but slower for γ < 0.

Supplementary Figure 6: Learning dynamics under different learning rules implemented in networks
initialized with large random weights sampled from Gaussian distribution (SD = 0.1 in contrast to
10−10 as shown in Fig. 2 of the main paper).

configurations that achieve zero training error. For an autoencoder, if we set y = x, then when the
network achieves zero training error at convergence, we get ŷ = W2W1x ≈ x, i.e., W2W1 ≈ I,
and WT

2 ≈W1 when the mapping is minimum norm. Thus, the hidden-unit activity vector after the
backwards sweep update is given by h = W1x + γWT

2 ŷ ≈ W1x + γW1x, and this shrinks to
zero when γ = −1.

1.6 Illusory correlation

The predicted value of a feature m for item i is a sum of contributions from all semantic modes (red
traces in Supp. Fig. 7). That is, the predicted value of a feature m for item i is Σαa

α(t)uαmv
α
i , where

α indexes different modes, uαm is the m-th row/α-th column of matrix U, and vαi is the α-th row/i-th
column of matrix VT .

To examine illusory correlations, we consider the fate of a feature which should be off, but which has
a strong positive loading onto the higher dimensions, but a negative loading on the lowest dimension,
producing a U-shaped learning trajectory (see Supp. Fig. 7).

Different learning rules predict distinct extents to which such illusory correlations will manifest, in
terms of not only different timing and duration but also different magnitudes of errors for different
levels of hierarchical dimensions. For instance, quasi-predictive coding (γ = −1, η = 0; Supp.
Fig. 7) predicts diminished illusion magnitudes for broader hierarchical dimensions (also see Fig. 2d
in the main paper, quasi-predictive coding learns all but the finest hierarchical level at a similar time).

1.7 Neural representations and visualization

Comparisons between representations in deep networks and the brain have frequently made use of
representational similarity analysis (RSA) [1], which considers two representations to be equivalent
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Supplementary Figure 7: Predicted value (blue) of feature can move (left), has petals (middle),
or has needle-like leaves (right), for an arbitrary item oak during learning. Red traces represent
the contributions from individual semantic modes. (a) Gradient descent. (b) Contrastive Hebbian
learning. (c) Quasi-predictive coding.

c

a

b

d

Supplementary Figure 8: Time-dependent neural representational similarity matrix (RSM; first 6
panels of each row) and neural-behavior correlation over training time (last panel of each row).
(a) Gradient descent (γ = η = 0); (b) A learning algorithm with top-down feedback and a weak
anti-Hebbian mechanism, corresponding to Figure 5b in the main paper. (c) and (d) are two variants
to (b), albeit still within the fourth quadrant of the 2D space of learning rules, demonstrating that the
anticorrelation is a common emergent feature for learning rules with positive γ and negative η.
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Supplementary Figure 9: Cumulative sum over training time of the norm of connection weights
update. ∆WCHL

1 (γ) is the CHL update in the first layer, ∆WHEBB
1 (η) is the correlational Hebbian

update in the first layer, ∆W1 is the total weight update in the first layer, and ∆W2 is the total
weight update in the second layer.

when the pairwise distances between neural representations for different inputs are identical. We
therefore compute the neural representational similarity matrix (RSM) Σh

ij = hTi hj , where hi is the
hidden representation of item i.

We fit non-metric MDS models to these distances using mdscale in MATLAB, with stress1 criterion
and 10 random starting points. For the time-dependent MDS analysis, we stack the hidden-unit
activity matrices generated at different training epochs into a big activity matrix, and compute the
column-wise Euclidean distances of this big matrix of Nh rows by Np × Nt columns (Nh is the
number of hidden units, Np the number of objects, and Nt the total number of epochs). We finally
apply MDS to the big distance matrix to ensure the distances among objects and the evolution of
these distances are estimated within the same multi-dimensional space.

In Supp. Fig. 8, we visualize the time-dependent neural representations Σh
ij for learning algorithms

with γ > 0 and η < 0. We also plot the correlation between hidden layer representations and the
desired behavioral correlations Σy

ij = yTi yj .

1.8 Synaptic weight updates across layers

In the model structure described in the paper, weights are updated with a learning rule defined by two
parameters, γ and η, which govern the nature of a contrastive Hebbian update ∆WCHL

i (γ), i = 1, 2
and a standard Hebbian update ∆WHEBB

1 (η), respectively, such that the total update is ∆W1 =
∆WCHL

1 (γ) + ∆WHEBB
1 (η), and ∆W2 = ∆WCHL

2 (γ). In other words, the connection matrix W1

in the first layer is updated at each training time by two components, one from the CHL, and one from
the Hebbian term, whereas the connection matrix W2 in the second layer is by its nature controlled
by the CHL.

Here, we show in detail the competing contributions from CHL versus Hebbian term to synaptic
weight update in the first layer (Supp. Fig. 9). Strong Hebbian algorithms yield first layer weights
that are dominated by unsupervised Hebbian updates.

1.9 Generalization to arbitrarily deep linear networks

Saxe et al. [4] showed that for deep linear networks trained with gradient descent, the real difference
is between 0 vs. 1 hidden layer. Here, we examine the influence of depth on our multi-layer model
with top-down feedbacks and correlational Hebbian components. Consider a multi-layer network
with D + 1 layers of neurons (i.e., D layers of synaptic weights), with 0 being the input layer and D
the output layer. The activities of the i-th layer of neurons are denoted by the vector hi (i = 1 to D;
h0 = x). Synaptic weights mapping the activities of layer (i− 1) to those of layer i are denoted by
Wi. In order to learn, weights are updated with a learning rule defined by two parameters, γ and η,
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Supplementary Figure 10: Training error (squared Frobenius norm of error) and mode strengths as a
function of network depth. Deeper networks train slower, but preserves similar hallmarks of learning
dynamics such as stage-like transition and progressive differentiation for CHL combined with a weak
Hebbian component (γ = 0.05, η = 0.001). Simulations are based on learning rate λ = 0.01; 32
hidden units within each hidden layer.
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Supplementary Figure 11: Time-varying RSM of the neural activities at each layer of neurons for a
deep network with 2 hidden layers.
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which govern the nature of a contrastive Hebbian update ∆WCHL
i (γ) (i = 1 to D), and a correlational

Hebbian update ∆WHEBB
i (η) (i = 1 to D − 1)2, respectively, such that the total weight update is the

sum of the CHL contribution and the Hebbian contribution: ∆Wi = ∆WCHL
i (γ) + ∆WHEBB

i (η) (i
= 1 to D − 1), and ∆WD = WCHL

D (γ). Following a standard CHL [6] in a deep linear network, the
dynamic equation of the activity at layer i is:

dhi
dt

= −hi + Wihi−1 + γWT
i+1hi+1 (8)

In general, we simulate the dynamic systems for coupled layers i = 1 to D using forward Euler
method (time-step dt = 0.05 ms for a 3-layer network, and dt = 0.5 ms for a 4-layer network, total
simulation time = 100 time steps)3.

CHL is implemented via a contrast between two states of the network, one in which the activity of
the output neurons are kept free, and one in which the output neurons are clamped to the desired
target values y ∈ RNo . In the ‘free’ (i.e., input-driven) state, the hidden-layer activity dynamics hfi
after recurrence is given by

dhfi
dt

=

{
−hfi + Wih

f
i−1 + γWT

i+1h
f
i+1 if i = 1 to D − 1

−hfi + Wih
f
i−1 if i = D

(9)

In the ‘clamped’ (i.e., target-driven) state, hidden layer activity dynamics is given by

dhci
dt

=

{
−hci + Wih

c
i−1 + γWT

i+1h
c
i+1 if i = 1 to D − 2

−hci + Wih
c
i−1 + γWT

i+1y if i = D − 1
(10)

The output layer in the clamped state is always clamped at the desired value hcD = y. The overall
weight updates of the CHL contribution could be computed as the contrast between the clamped and
free states:

1

λ
∆WCHL

i (γ) = γi−D[hci (h
c
i−1)T − hfi (hfi−1)T ], i = 1 to D (11)

where λ is the learning rate.

In addition, the correlational Hebbian update term ∆WHEBB
i (η) is a standard correlation rule in

which co-active neurons potentiate their connections, and is unsupervised. Because simple Hebbian
learning updates are known to be unstable, we include a norm constraint (known as Oja’s rule) for
positive coefficients η, and normalize the update using the Euclidean norm ‖·‖2 of the weights for
negative η [5]. The nth row of ∆WHEBB

i (η), which we denote as ∆wi(η)Tn , corresponding to the
weights into the nth hidden unit, is given by

∆wHEBB
i (η)Tn =

{
ηhff

i,n(hTi−1 − hff
i,nwT

i,n) if η > 0

ηhff
i,nhTi−1/(1 + ‖wi,n‖22) otherwise

(12)

where i = 1 to D − 1, and hff
i = Wihi−1 is the feedforward activity pass from layer i− 1 to layer

i. Extra depth gives rise to slower learning speed, but preserves qualitative features like stage-like
transitions, and the formatting of internal representations (Supp. Fig. 10 and Supp. Fig. 11).
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